

Mark Scheme (Results)

October 2024

Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01 Rates, Equilibria and Further Organic Chemistry

Section A

Question Number	Answer	Mark
1	The only correct answer is B (butanoyl chloride and propan-1-ol)	(1)
	A is incorrect because it would produce 1-methylethyl butanoate	
	C is incorrect because it would produce butyl propanoate	
	D is incorrect because it would produce 1-methylpropyl propanoate	

Question Number	Answer	Mark
2	The only correct answer is D (CH ₃ CH ₂ COOH)	(1)
	A is incorrect because $CH_3CH_2CH_2CH_3$ has a similar number of electrons but no hydrogen bonds	
	B is incorrect because CH ₃ CH ₂ CHO has a similar number of electrons but no hydrogen bonds	
	C is incorrect because CH ₃ COCH ₂ CH ₃ has a similar number of electrons but no hydrogen bonds	

Question Number	Answer	Mark
3(a)	The only correct answer is A (six)	(1)
	B is incorrect because there are six chiral centres as shown	
	C is incorrect because there are six chiral centres as shown	
	D is incorrect because there are six chiral centres as shown	

Question Number	Answer	Mark
3(b)	The only correct answer is B (reduction, addition)	(1)
	A is incorrect because the conversion of $C=C$ to $C-C$ is an addition reaction	
	${\it C}$ is incorrect because the conversion of C=O to C-OH is a reduction and the conversion of C=C to C-C is an addition reaction	
	${\it D}$ is incorrect because the conversion of C=O to C-OH is a reduction	

Question Number	Answer	Mark
3(c)	The only correct answer is D ((1)
	Absorption Retention time/min	
	A is incorrect because the area under the curve is unchanged and the retention time has doubled	
	B is incorrect because the retention time has doubled	
	$oldsymbol{C}$ is incorrect because the area under the curve is unchanged	

Question Number	Answer	Mark
4	The only correct answer is C (H ₂ X)	(1)
	A is incorrect because there is more than one equivalence point on the curve	
	B is incorrect because hydrogen can only form one bond per atom in a molecule	
	D is incorrect because the equivalence points are not the three horizontal sections on the curve	

Question Number	Answer	Mark
5	The only correct answer is C (CH ₃ COOH, CH ₃ CO ₂ ⁻)	(1)
	A is incorrect because HSO_3^- is a base in the forward reaction and SO_3^{2-} is not formed	
	${\it B}$ is incorrect because HSO $_3^-$ is a base in the forward reaction	
	$m{D}$ is incorrect because $CH_3COOH_2^+$ is not formed	

Question Number	Answer	Mark
6	The only correct answer is D (methyl orange)	(1)
	$oldsymbol{A}$ is incorrect because the colour change at the end-point is too gradual	
	$m{B}$ is incorrect because the pH range of the indicator is outside the change in pH at equivalence	
	$m{C}$ is incorrect because the pH range of the indicator is outside the change in pH at equivalence	

Question Number	Answer	Mark
7	The only correct answer is D (donates hydrogen ions and becomes an anion)	(1)
	A is incorrect because the very weak acid does not accept hydroxide ions, and does not become a cation under these conditions	
	B is incorrect because the very weak acid does not accept hydroxide ions, under these conditions	
	C is incorrect because the very weak acid does not become a cation, under these conditions	

Question Number	Answer	Mark
8	The only correct answer is C (6.8)	(1)
	A is incorrect because the increase in T moves the equilibrium to the right, increasing the concentration of H^+ ions, hence lowering the pH from 7 (at 298 K)	
	${\it B}$ is incorrect because this is the pH at 298 K and the increase in T moves the equilibrium to the right, increasing the concentration of H^+ ions, hence lowering the pH	
	${m D}$ is incorrect as it would require an increase in K_w of approximately 250 times	

Question Number	Answer	Mark
9	The only correct answer is A $(K_p = p(NO_2)^2 p(O_2)^{1/2})$	(1)
	B is incorrect because the stoichiometric coefficients to balance the equation have been doubled in the equilibrium expression	
	C is incorrect because solid species have been included in the equilibrium expression	
	D is incorrect because the stoichiometric coefficients to balance the equation have been doubled and solid species have been included in the equilibrium expression	

Question Number	Answer	Mark
10(a)	The only correct answer is B (add sodium carbonate solution to each compound)	(1)
	A is incorrect because neither compound will react with Tollens' reagent	
	$oldsymbol{C}$ is incorrect because neither compound will react with iodine under alkaline conditions	
	$m{D}$ is incorrect because both compounds will react with phosphorus(V) chloride	

Question Number	Answer				
10(b)	The only correct answer is C (warm each compound with iodine under alkaline conditions)				
	A is incorrect because neither compound will react with Tollens' reagent				
	B is incorrect because neither compound will react with sodium carbonate solution				
	D is incorrect because both compounds will react with phosphorus(V) chloride				

Question Number	Answer	
10(c)	The only correct answer is A (warm each compound with Tollens' reagent)	
	B is incorrect because neither compound will react with sodium carbonate solution	
	$oldsymbol{C}$ is incorrect because neither compound will react with iodine under alkaline conditions	
	D is incorrect because neither compound will react with phosphorus(V) chloride	

Question Number	Answer	Mark
11	The only correct answer is B (W and X only)	(1)
	A is incorrect because reaction X and W will give a positive value for $\Delta S_{ ext{total}}$	
	C is incorrect because reaction Y will give a negative value for $\Delta S_{ ext{total}}$	
	$m{D}$ is incorrect because reaction Z will give a negative value for $\Delta S_{ ext{total}}$	

Question Number	Answer	Mark
12	The only correct answer is C ((1)
	A is incorrect because the isomer has only 2 peaks its ¹³ C NMR spectrum	
	B is incorrect because the isomer has only 4 peaks its ¹³ C NMR spectrum	
	D is incorrect because the isomer has only 3 peaks its ¹³ C NMR spectrum	

The only correct answer is A ((1)
B is incorrect because a bond pair of electrons is moving away from an electronegative Cl atom C is incorrect because the positive nitrogen does not have an electron pair that could move to the N-H bond D is incorrect because a bond pair of electrons is moving towards a lone pair of electrons	(1)

Question Number	Answer	Mark
14(a)	The only correct answer is B (ether)	(1)
	A is incorrect because LiAlH4 will accept a proton from ethanol	
	$m{C}$ is incorrect because LiAlH4 will react with ethyl ethanoate	
	D is incorrect because LiAlH ₄ will accept a proton from water	

Question Number	Answer	Mark
14(b)	The only correct answer is D (A is incorrect because the carboxyl group will be reduced to a primary alcohol by LiAlH4	(1)
	B is incorrect because the $C=C$ will not be reduced to an alkane by $LiAlH_4$	
	${\it C}$ is incorrect because the carboxyl group will be reduced to a primary alcohol by LiAlH ₄ and the C=C will not be reduced to an alkane by LiAlH ₄	

Question Number	Answer	
15	The only correct answer is B (HO(CH ₂) ₄ COCl)	(1)
	A is incorrect because both functional groups at either end of the monomer are the same	
	C is incorrect because an addition polymer would form	
	D is incorrect because the alcohol on one monomer will not react with the halogenoalkane on a second monomer	

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)	An answer that makes reference to the following point:		(1)
	• 3-methylpentan-3-ol	Allow 3-methyl-3-pentanol / 3-methyl pent-3-ol / 3-methyl penta-3-ol 3-hydroxy-3-methylpentane / 3-methylpentane-3-ol Ignore punctuation errors e.g. additional commas, spaces, missing hyphens etc.	

Question Number	Answer		Additional Guidance	Mark
16(b)(i)	An answer that makes reference to the following points: • 3 environments correctly labelled/circled scores • 2 environments correctly labelled / circled scores • 1 or 0 environments correctly labelled/circled scores	(2) (1) (0)	hydrogen environment c H ₃ C - C - CH ₃ hydrogen environment a hydrogen environment b hydrogen environment d If additional labelling of carbon atoms not attached to hydrogen atoms, apply list principle.	(2)

Question Number	Answer		Additional Guidance	Mark
16(b)(ii)	An explanation that makes reference to three of the following points		Ignore comments related to peaks / areas / splitting due to CH ₂ groups	(3)
	• the chemical shift for the CH ₃ CO methyl group will be at 1.6 – 3.0 ppm OR CH ₃ CH ₂ groups will be at 0 – 1.8 ppm	(1)	Allow any single value or range within the ranges If values are given for both methyl groups, do not award 2 single values that are the same or if one of the values is out of range	
	• the peak for CH ₃ CO will be a singlet (as the adjacent carbon has no hydrogen atoms attached) and the peak for the methyl groups attached to CH ₂ groups will be a triplet (as adjacent carbons have 2 hydrogen atoms attached)	(1)	Ignore references to CH ₂ splitting pattern	
	• the (relative) area (under the peak) for methyl groups attached to CH ₂ group will be twice the area (under the peak) for CH ₃ CO	(1)	Allow the (relative) area (under the peak) for methyl groups attached to CH ₂ group will be 6, the (relative) area (under the peak) for CH ₃ CO will be 3 Ignore heights (of the peaks)	
			If no marks awarded for specific comments as per the MS, allow 1 mark max for any two generic comments (for any proton environments) from • (chemical) shifts / different peak positions • area (under peak) • splitting (pattern)	

Question Number	Answer	Additional Guidance	Mark
16(c)	An answer that makes reference to the following point: OH OH OH OH OH OH OH OH OH O	Allow correct displayed, structural or hybrid formulae Ignore incorrect connectivity of OH group	(1)

Question Number	Answer	Additional Guidance	Mark
16(d)(i)	An answer that makes reference to the following points:	Ignore correct partial charges on carbonyl bond	(2)
		Do not award incorrect dipoles on carbonyl, but penalise only once in both marking points	
		Do not award full negative charge on oxygen, but penalise only once in both marking points Penalise use of half-arrows once only Do not award additional incorrect arrows in either step	
	• arrow from lone pair of carbonyl oxygen to H ⁺ (1) ion	Do not award δ + added to hydrogen ion	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	• arrow from lone pair of hydroxyl oxygen to (1)		
	carbon attached to protonated oxygen in intermediate	HO C H OH OH OH CH3	

Question Number	Answer	Additional Guidance	Mark
16(d)(ii)	An answer that makes reference to the following point:		(1)
	• catalyst	Allow to speed up reaction (without being used up) / reduces activation energy	
		Ignore electrophile / acid / electron acceptor / proton donor	
		Do not award nucleophile	

(Total for Question 16 = 10 marks)

Question Number	Answer		Additional Guidance	Mark
17(a)	An answer that makes reference to the following points:		Example of calculation	(6)
	 calculation of moles of hydroxide ions 	(1)	$(80.0 \div 1000) \times 0.240 = 0.0192 \text{ (mol)}$	
	 calculation of moles of hydrogen ions OR 	(1)	$(20.0 \div 1000) \times 0.072 \times 2 = 2.88 \times 10^{-3} \text{ (mol)}$	
	calculation of moles of sulfuric acid		$(20.0 \div 1000) \times 0.072 = 1.44 \times 10^{-3} \text{ (mol)}$	
	• calculation of excess moles of hydroxide ions	(1)	$0.0192 - 2.88 \times 10^{-3} = 0.01632 \text{ (mol)}$ No subtraction loses M3 and M4	
	• calculation of concentration of excess hydroxide ions	(1)	$(0.01632) \div (100 \div 1000) = 0.1632 \text{ (mol dm}^{-3})$	
	• calculation of concentration of hydrogen ions	(1)	$(1.00 \times 10^{-14}) \div 0.1632 = 6.1275 \times 10^{-14} \text{ (mol dm}^{-3})$	
	• calculation of pH to 1dp	(1)	$-\log(6.1275 \times 10^{-14}) = 13.2$	
			Allow TE throughout M1 to M5 TE for M6 must give a value greater than 7 and less than 14	
			Comment Take care to check as use of 1.44×10^{-3} in the subtraction as this gives an answer very close to the true answer but would not score M3	
	Alternative method for M5 and M6			
	• M5 calculation of pOH / calculation of log[OH ⁻]		$-\log(0.1632) = 0.78728 / \log(0.1632) = -0.78728$	
	M6 calculation of pH to 1dp		14 - 0.78728 = 13.2 / 14 - (-0.78728) = 13.2	

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	An answer that makes reference to the following point:		(1)
	 (an acid solution) that contains a significant proportion / amount of undissociated acid 	Allow an acid that hardly dissociates / an acid that is (only) partially dissociated / an acid that doesn't dissociate completely / dissociation is low / dissociation is small / equilibrium lies to the left / K_a is small / pK_a is large	
		Ignore comments about concentration or number of H ⁺ ions	

Question Number	Answer	Additional Guidance	Mark
17(b)(ii)	A description that makes reference to two of the following points:		(2)
	• a solution whose pH barely changes / resists changes in pH (1)	Allow a solution whose pH remains (almost) constant Allow prevents pH (of solution) from changing (significantly)	
	when small amounts of acid are added and when small amounts of base / alkali are added	Allow H ⁺ for acid Allow OH ⁻ for base	
		Ignore any comments regarding composition of buffer even if incorrect	

Question Number	Answer		Additional Guidance	Mark
17(b)(iii)	An answer that makes reference to the following points:		Example of calculation	(5)
	• calculation of concentration of hydrogen ions	(1)	$10^{-2.18} / 6.6069 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$	
	• rearrangement of K_a expression	(1)	$1.54 \times 10^{-2} = \underbrace{6.6069 \times 10^{-3} \times [NaHSO_3]}_{0.048}$ $[NaHSO_3] = \underbrace{1.54 \times 10^{-2} \times 0.048}_{1.54 \times 10^{-2} \times 0.048}$	
			6.6069×10^{-3}	
	• calculation of concentration of sodium hydrogensulfite	(1)	0.11188 (mol dm ⁻³)	
	• calculation of moles of sodium hydrogensulfite	(1)	$(0.11188) \times (50.0 \div 1000) = 5.5941 \times 10^{-3} $ (mol)	
	• calculation of mass of sodium hydrogensulfite	(1)	$5.5941 \times 10^{-3} \times 104.1 = 0.58235 \text{ (g)}$	
	Alternative M1, M2 and M3 via Henderson-Hasselbalch		Ignore SF except 1 SF Allow TE throughout	
	• calculation of pK_a	(1)	$-\log(1.54 \times 10^{-2}) = 1.8125$	
	• rearrangement of Henderson-Hasselbalch expression	(1)	$pH = pK_a + log[NaHSO_3]$ 0.048	
	calculation of concentration of sodium hydrogensulfite	(1)	$2.18 = 1.8125 + \log[\text{NaHSO}_3] - \log(0.048)$ $\log[\text{NaHSO}_3] = 2.18 - 1.8125 - 1.3188 = -0.9513$ $[\text{NaHSO}_3] = 10^{-0.9513} = 0.11188 \text{ (mol dm}^{-3})$	
	Comment allow use of moles instead of concentration in Henderson-Hasselbach expression.			

Question Number	Answer		Addition	nal Guidance	Mark
18(a)(i)	An answer that makes reference to the following points:			0:	(4)
	 structure of the intermediate carbanion including full negative charge anywhere on the ion or outside a bracket around the ion 	(1)	H_3C $\delta + \delta - $	H_3C C C C C C C C C C	Expert
	step 1 mechanism			fast	
	• dipole on C=O			\	
	 curly arrow from C=O bond to O(δ-) 			H ₃ C CN	
	• lone pair on C of CN ⁻		do not award :CN ^{δ-}	Ĥ	
	• arrow from lone pair on C of CN ⁻ to C in C=O			All 7 points scores 3 marks 4, 5 or 6 points scores 2 marks 2 or 3 points score 1 mark	
	step 2 mechanism • lone pair on O of intermediate			Note – if lone pair missing in M4 do not penalise again in M5	
	arrow from lone pair on oxygen of intermediate to H (of H-CN)		Ignore correct dipole on HCN	If lone pair missing in M6, do not penalise again in M7	
	• curly arrow from H-C bond to C (of CN)			If both lone pairs shown but neither arrow comes from the lone pairs, penalise once only	
			Penalise use of half- arrows once only	penalise office offig	

Question Number	Answer		Additional Guidance	Mark
18(a)(ii)	An explanation that makes reference to the following points:			(2)
	• to move the dissociation equilibrium of HCN to the right	(1)	OH ⁻ reacts with HCN to produce CN ⁻	
	• to increase the concentration of cyanide ions / CN ⁻	(1)	Allow to produce more cyanide ions / CN	
			Ignore 'speeds up the reaction'	
			Do not award acts as a catalyst	

Question Number	Answer	Additional Guidance	Mark
18(b)	An answer that makes reference to the following point:		(1)
		Accept reagents in either order	
	• rate = $k[CH_3CHO][CN^-]$		
		Allow upper case <i>K</i>	
		Do not award rate = $k[CH_3CHO][HCN]$	

Question Number	Answer	Additional Guidance	Mark
18(c)	An answer that makes reference to the following point:		(1)
	straight line upwards beginning at the origin	Allow TE from (b)	
		Rate / mol dm ⁻³ s ⁻¹ [CH ₃ CHO] / mol dm ⁻³	
		Do not award vertical or horizontal lines	
		Comment	
		Mark consequentially on (b), so if 2 nd order wrt CH ₃ CHO candidate should show 2 nd order line	
		If no answer given in (b) allow first order line only	

Question Number	A	nswer	Additional Guidance	Mark
Number *18(d)	This question assesses the student logically structured answer with line. Marks are awarded for indicative contents and shows lines of reason. The following table shows how the indicative content. Number of indicative marking points seen in answer 6 5-4 3-2	nkages and fully sustained reasoning. ontent and for how the answer is ning.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6) Expert
	The following table shows how the structure and lines of reasoning	narks should be awarded for Number of marks awarded for structure of answer and sustained lines of reasoning	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark 0, 1 or 2 indicative points would get zero reasoning marks	
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with some linkages and lines of reasoning Answer has no linkages between points and is unstructured	2	If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning	

Indicative points	
IP1 formation of orange precipitate / solid / crystals	Allow yellow / orange-yellow / red
IP2 (precipitate) separated by (Buchner) filtration	Allow use a filter funnel to separate Allow IP2 as part of post-recrystallisation process Ignore hot filtration (to remove insoluble impurities)
IP3 dissolve impure solid in (minimum volume) of hot / boiling solvent and cool (to form crystals)	Allow any identified solvent e.g. water
IP4 (filter then) rinse with (ice) cold solvent and to remove (remaining) dissolved impurities / minimise loss of crystals / minimise dissolving of crystals	If neither IP3 or IP4 are awarded, then allow an IP for 'recrystallise the precipitate/ solid/ crystals'
IP5 dry between filter papers / in (warm) oven (to remove excess solvent) / in a dessicator	Allow dry with paper towel
IP6 identify melting temperature and compare to data book / (chemical) literature / known values / database / (reputable) internet (source)	Do not award identify boiling temperature

(Total for Question 18 = 14 marks)

Question Number	Answer	Additional Guidance	Mark
19(a)(i)	An answer that makes reference to the following point:		(1)
	• (isomers that have the same structural formula but) a different spatial arrangement of atoms	Allow different 3D arrangement of atoms	
	spatial arrangement of atoms	Allow 'non-superimposable mirror images'	
		Ignore 'different structure' Ignore any references to geometric isomerism Ignore any references to chiral centres	

Question Number	Answer		Additional Guidance	Mark
19(a)(ii)	An explanation that makes reference to the following points:			(3)
	• (when concentration of) 2-bromobutane doubles (from 0.15 to 0.30) rate doubles, so 1^{st} order wrt 2-bromobutane $/0.3 \div 0.15 = 2$ and $0.054 \div 0.027 = 2$ so 1^{st} order wrt 2-bromobutane	(1)		
	• (when concentration of) 2-bromobutane triples (from 0.15 to 0.45) overall rate increases by a factor of 6 / 0.45 ÷ 0.15 = 3 and 0.162 ÷ 0.027 = 6	(1)	Allow when (concentration of) 2-bromobutane goes up by a factor of 1.5 (from 0.30 to 0.45) overall rate increases by a factor of 3 / $0.45 \div 0.3 = 1.5$ and $0.162 \div 0.054 = 3$	
	 (change in concentration of) 2-bromobutane must have tripled rate, so effect of doubling the concentration of hydroxide ions (from 0.15 to 0.30) must have doubled rate so 1st order wrt hydroxide ions (so S_N2) / 6 ÷ 3 = 2 so 1st order wrt hydroxide ions (so S_N2) 	(1)	Allow (change in concentration) of 2-bromobutane must have increased rate by \times 1.5, so effect of doubling the concentration of hydroxide ions (from 0.15 to 0.30) must have doubled rate so first order wrt hydroxide ions (so S_N2) / $3 \div 1.5 = 2$ so 1^{st} order wrt hydroxide ions (so S_N2)	
			If no marks awarded allow 1 rescue mark for linking the most relevant experiments to the deduction of orders i.e. experiments 1 and 2 show reaction is first order with respect to 2-bromobutane and	
			experiments 1 and 3 show reaction is first order with respect to hydroxide ions	

Question Number	Answer		Additional Guidance	Mark
19(a)(iii)	An explanation that makes reference to the following points:			(3)
	product is optically active	(1)	Allow product is (also) a stereoisomer Do not award racemic mixture	
	stereochemistry is inverted / structure inverted / product rotates (plane-polarised) light in opposite direction	(1)	Allow the product formed is the mirror image (of the reactant molecule) Allow the product has opposite optical activity (to the reactant) Ignore references to magnitude of rotation	
	 as the bromine (atom) is large, attack from the same side (by hydroxide ion) cannot occur OR attack on the (δ+) carbon (the hydroxide (ion)) is only possible on the opposite side to the bromine (atom) / leaving group 	(1)	Allow hydroxide (ion) is repelled by $(\delta-)$ bromine (atom) / attack (by hydroxide (ion)) can only occur from one direction Allow so that the most stable transition state is formed Allow (there is space for) hydroxide (ion) to attack the $(\delta+)$ carbon on the opposite side (than Br)	

Question Number	Answer		Additional Guidance	Mark
19(b)	An explanation that makes reference to the following points:			(3)
	• two activation energies (on the profile) imply 2 steps (in the reaction) / implies intermediate forms	-	Accept the trough shows the formation of intermediate / shows two steps	
			Allow '2 bumps means 2 steps' / '2 peaks means an intermediate forms'	
	• first activation energy is large(r) / high(er)	1)	Allow reverse arguments for M2 and M3	
	• so first step (of mechanism) is slow(er) (so S_N1)	_	Allow first step is the rate determining step / RDS (of the mechanism)	

(Total for Question 19 = 10 marks) TOTAL FOR SECTION B = 48 MARK

Section C

Question Number	Answer		Additional Guidance	Mark
20(a)(i)			Example of calculation	(2)
	• expression for calculation of $\Delta S_{system}^{\theta}$	(1)	(70.4 + 213.6) - 112.1	
	• calculation of $\Delta S_{\text{system}}^{\theta}$	(1)	= $(+)171.9 (J K^{-1} mol^{-1})$	
			Accept (+)172 (J K ⁻¹ mol ⁻¹) Accept (+) 0.1719 kJ K ⁻¹ mol ⁻¹ If units are given for M2, they must be correct Allow 1 mark for final answer of – 171.9 (J K ⁻¹ mol ⁻¹)	
			Ignore SF except 1 SF	
			Correct answer with no working scores (2)	
			The only TE allowed from M1 to M2 is a transcription error in copying the data from the table	

Question Number	Answer		Additional Guidance	Mark
20(a)(ii)	• recognition that at the minimum temperature for decomposition $\Delta S_{surr}^{\theta} = -\Delta S_{system}^{\theta}$	(1)	Example of calculation Allow TE from (a)(i) $\Delta S_{surr}^{\theta} = -171.9 \text{ (J K}^{-1} \text{ mol}^{-1}\text{)}$ M1 can be subsumed within award of M3	(3)
	• conversion of temperature to Kelvin		712 + 273 = 985 (K) $\Delta H = -(985 \times -0.1719)$	
	• calculation of ΔH and answer to 2 or 3 SF	(1)	$\Delta H = -(983 \times -0.1719)$ = (+) 169.3 = (+) 169 / 170 (kJ mol ⁻¹) Allow	
			Allow $\Delta H = -(985 \times -171.9)$ = (+) 169300 = 169000 / 170000 J mol ⁻¹	
			Allow TE from M1 to M3	
	Alternative for M1		Correct answer with no working scores 3	
	• recognition that at the minimum temperature for decomposition $\Delta G^{\theta} = 0$ OR T = $\Delta H \div \Delta S$			

Question Number	Answer		Additional Guidance	Mark
20(b)		(4)	Example of calculation Allow TE throughout	(3)
	calculation of energy released	(1)	$4.18 \times 200 \times 6.8 = 5684.8$ (J) Ignore any signs in M1	
			Do not award use of mass = 204.26	
	• calculation of moles of anhydrous magnesium chloride	(1)	$4.26 \div 95.3 = 0.044701 \text{ (mol)}$	
	• calculation of $\Delta_{sol}H$, including sign and unit	(1)	5684.8 ÷ 0.044701 = 127170 J mol ⁻¹ so $\Delta_{\text{sol}}H = -127 \text{ kJ mol}^{-1} / -127170 \text{ J mol}^{-1}$	
			Correct answer with no working scores 3	
			Ignore SF except 1 SF	

Question Number	Answer	Additional Guidance	Mark
20(c)(i)	An answer that makes reference to the following points:		(1)
	 correct formulae and state symbols in left hand box 	$Mg^{2+}(g) + 2Cl^{-}(g)$	
	and		
	correct formula and state symbol in right hand box	$MgCl_2(s)$	

Question Number	Answer		Additional Guidance	Mark
20(c)(ii)			Example of calculation	(3)
	• expression for standard enthalpy of hydration	(1)	$-2526 + (-127) = -1920 + 2\Delta_{hyd}H[Cl^{-}(g)]$	
	• calculation of enthalpy of hydration of chloride ions	(1)	$2\Delta_{\text{hyd}}H[\text{Cl}^{-}(g)] = [-2526 + (-127)] + 1920$ = -733 (kJ mol ⁻¹)	
	calculation of standard enthalpy of hydration of chloride ions	(1)	$-733 \div 2 = -366.5 / -367 \text{ (kJ mol}^{-1})$ OR $-2526 + (-155) = -1920 + 2\Delta_{hyd}H[Cl^{-}(g)]$ $2\Delta_{hyd}H[Cl^{-}(g)] = [-2526 + (-155)] + 1920$ $= -761 \text{ (kJ mol}^{-1})$ $(= -761 \div 2) = -380.5 / -381 \text{ (kJ mol}^{-1})$ Allow TE from b for M1 No TE from M1 into M2 for incorrect expression, apart from transcription error from b, or value carried though from (b) with incorrect units	
			Allow TE from M2 to M3 Correct answer with no/some working scores (3) Ignore SF except 1 SF	
			Allow use of – 155 even if an answer is evaluated in (b)	

Question Number	Answer		Additional Guidance	Mark
20(d)(i)	An answer that makes reference to two of the following points:			(2)
	• the bonding is 100% ionic / the bonding is only ionic	(1)	Allow no covalent character Allow 'it is 100% ionic'	
	• the ions are in contact with each other	(1)		
	• the ions are perfect spheres	(1)	Allow no distortion of electron cloud of Cl ⁻ /chloride ion Allow no polarisation of Cl ⁻ /chloride ion Ignore polarisation of chlor ine	
	• the charges are point charges	(1)	Allow the charge is distributed evenly across the ions	

Question Number	Answer		Additional Guidance	Mark
20(d)(ii)	An explanation that makes reference to the following points:	(1)	Allow reverse argument for M1 and M3	(3)
	experimental value is more exothermic	(1)	Allow more negative Allow greater in magnitude	
	• (because the) chloride ion is polarised (by the magnesium ion)	(1)	Ignore experimental value is larger / smaller	
	• giving (the bonding in) magnesium chloride some covalent character (so the bonding is stronger)	(1)		

Question Number	Answer		Additional Guidance	Mark
20(e)(i)			Example of calculation	(2)
	• calculation of moles of BaCO ₃ and HCl	(1)	$5.00 \div 197.3 = 0.025342 \text{ (mol)}$ and $(120 \div 1000) \times 0.5 = 0.06 \text{ (mol)}$ Both correct answers with no working scores (1)	
	• show that number of moles of BaCO ₃ is less than that	(1)	Allow use of 137 for A_r of Ba $0.02534 < (0.06 \div 2) / 0.02534 < 0.03$	
	required to react with moles of HCl		Allow reverse argument i.e. HCl (0.06) is > 2 × BaCO ₃ (0.05068) Allow TE from M1 only if it shows HCl in excess	

Question Number	Answer		Additional Guidance	Mark
20(e)(ii)			Example of calculation	(3)
	 calculation of moles of BaCO₃ (= moles of BaCl₂) and 	(1)	$(5.00 \div 197.3 =) 0.02534 \text{ (mol)}$	
	calculation of relative formula mass of BaCl ₂ •nH ₂ O		$6.19 \div 0.02534 = 244.26 \text{ (g mol}^{-1}\text{)}$	
	• calculation of formula mass due to nH ₂ O	(1)	244.26 - (137.3 + 71) = 35.96	
	• calculation of n to nearest whole number	(1)	$(35.96 \div 18 = 1.9978) = 2$	
	Alternative method		Correct final answer with no working scores M3 only	
	 deduction of moles of anhydrous BaCl₂ and calculation of mass of anhydrous BaCl₂ 	(1)	$0.02534 \times (137.3 + 71) = 5.2788 \text{ (g)}$	
	 calculation of mass of water of crystallisation 	(1)	6.19 - 5.2788 = 0.9112 (g)	
	• calculation of mole of water of crystallisation and n to nearest whole number	(1)	$0.9122 \div 18 = 0.05062$ $0.05062 \div 0.02534 = 1.9977 = 2$	

(Total for Question 20 = 22 marks) TOTAL FOR SECTION C = 22 MARKS TOTAL FOR PAPER = 90 MARKS